HIMA TKN STTN BATAN

HIMA TKN STTN BATAN

Minggu, 06 September 2009

Radiasi Nuklir Ternyata Lebih Ramah dibanding Radiasi Alam

Jika kita berasumsi secara bebas dengan sebuah pertanyaan; jumlah korban mana yang paling banyak diantara jumlah orang yang meninggal karena radiasi nuklir dengan orang yang meninggal karena merokok?. Seandainya anda pakar kesehatan, tentu anda akan menjawab secara meyakinkan bahwa orang yang meninggal karena merokok, lebih banyak jumlahnya. Dan itu fakta. Tetapi dikarenakan media-media informasi seperti TV, surat kabar, ataupun internet, lebih banyak menyuguhkan negatifnya nuklir, sehingga sering mempengaruhi opini publik.

Anda bayangkan saja, jika anda disuguhkan suatu berita tentang peristiwa Hiroshima dan Nagasaki ataupun peristiwa Tragedi Chernobyl yang merengut nyawa ribuan orang sekaligus. Tentu anda akan menyatakan nuklir sangat berbahaya dan berasumsi jumlah korban nukilr lebih banyak karena korbannya secara massal. Hal ini jauh berbeda dengan korban merokok, tentu kita tidak pernah mendengar adanya korban massal akibat keracunan asap rokok. Yang ada korban akibat merokok berjatuhan disekitar kita, yang terkadang tidak kita sadari. Berdasarkan data World Health Organization (WHO) diperkirakan 4,9 juta orang meninggal dunia tiap tahunnya. Umumnya vonis akhir secara kesehatan bagi korban merokok ini adalah karena mengidap penyakit kanker.

Deskripsi diatas adalah salah satu contoh bahwa radiasi alam lebih berbahaya dari radiasi nuklir? kok bisa? Sebenarnya tanpa disadari oleh para perokok, bahwa selama mereka merokok, mereka telah terpapar radiasi salah satu gas radioaktif alam yaitu gas radon yang terdapat dalam daun tembakau. Radioaktif alam ini berasal dari pupuk fospat (P) yang dipupukkan pada daun tembakau sehingga gas radon terakumulasi di dalam tembakau. Sehingga perokok akan mudah terkena kanker paru-paru karena radiasi dari gas radon tersebut dapat masuk ke dalam paru-paru.

Secara umum gas radon ini lebih banyak terserap oleh para penambang bahan galian, karena pekerja tambang secara langsung menghirup gas radon secara berlebihan. Menurut perkiraan resiko kematian akibat gas radon mencapai 0,005%. Di Amerika Serikat misalnya dari sekitar 200 juta penduduknya diperkirakan ada 10-20 ribu orang meninggal karena menghirup gas radon.

Di Indonesia sendiri diketahui beberapa bahan bangunan seperti asbes dan gypsum yang banyak digunakan sebagai atap, semen, dan lain sebagainya mengandung bahan radioaktif. Di Swedia yang beriklim dingin sehingga rumah-rumah dibuat dari tembok yang tebal dengan ventilasi yang sedikit. Karena itu penumpukkan gas radon dalam rumah menjadi berlebih sehingga ada beberapa rumah yang mengandung unsur radiokatif alam seperti U238, Th232, dan K40 di atas batas kewajaran. Kadar gas radon dalam rumah tersebut mencapai 260 Bq/m3 udara, padahal kadar wajar di udara adalah 10 Bq/m3.

Selain radiasi gas radon, beberapa radiasi alam yang lain adalah radiasi kosmik dan sinar UV dari lampu neon. Bila dibandingkan dengan radiasi alam ini, bahaya radiasi nuklir jauh lebih kecil dari radiasi alam yang secara wajar kita terima. Hal ini dikarenakan intensitas kita terpapar oleh radiasi alam hampir setiap hari sedangkan radiasi nuklir hanya terjadi apabila terjadi kebocoran reaktor. Tetapi dengan kemajuan teknologi kemungkinan kebocoran itu sangat kecil karena telah dibuatnya keselamatan reaktor yang berlipat-lipat. Selain itu pula, radiasi nuklir buatan diuntungkan dengan waktu paruh dari sumber radiasi yang singkat, diantaranya Ce137, Co60, Xe, dan I131. Radiasi buatan ini mempunyai waktu paruh yang pendek dan zat radiokatif ini dapat dinyatakan habis jika telah 10 kali waktu paruhnya. Semisal waktu paruh dari I131 adalah 8 hari, jadi apabila terjadi kebocoran reaktor, maka reaksi yodium ini akan habis dalam waktu 80 hari.

Efek Radiasi

Efek radiasi secara umum bagi tubuh manusia dapat dibagi dalam dua kelompok yaitu:

  1. Efek Stokastik

    Efek stokastik yaitu efek radiasi yang kemunculannya pada individu tidak bisa dipastikan dengan faktor 10-5 (dari 100.000 orang diperkirakan yang terkena hanya 1 orang). Efek dari radiasi ini dikatakan stokastik jika radiasi yang terserap oleh tubuh dalam dosis rendah yaitu 0,25-1.000 mSv. Misalnya saja pada alat diagnosa gondok, penerimaan radiasi rendah ini diperbolehkan bukan hanya karena aman namun justru menguntungkan.

  2. Efek Deterministik

    Efek deterministik yaitu efek radiasi yang pasti muncul bila jaringan tubuh terkena paparan radiasi pengionan. Efek determiristik dapat terjadi bila dosis radiasi yang diterima telah lebih dari ambang batas seharusnya yaitu dibawah 3.000 mSv. Bila radiasi yang diterima diantara 3.000-6.000 mSv maka akan menyebabkan kulit memerah atau kerontokan rambut. 6.000-12.000 mSv akan menyebabkan perasaan mual, nafsu makan berkurang, lesu, lemah, demam, keringat yang berlebihan hingga menyebabkan shock yang beberapa saat akan timbul keluhan yang lebih parah yaitu nyeri perut, rambut rontok, bahkan kematian.

    Tetapi kemungkinan efek deterministik ini sangat kecil mengenai kita, dikarenakan berdasarkan survei lembaga penelitian yang menangani nuklir, radiasi nuklir hanya sebesar 0.08 mSv.

Untuk pekerja di reaktor nuklir untuk menangai efek radiasi ini agar tidak sampai ke tubuh individu, terdapat tiga dasar proteksi radiasi (keselamatan radiasi). Yaitu pengaturan waktu kerja dengan radiasi, pengaturan jarak dengan sumber radiasi, dan penggunaan bahan pelindung radiasi. Semakin pendek waktu yang digunakan untuk berada di medan radiasi, semakin jauh dari radiasi dan semakin tebal bahan pelindung, akan memperkecil dosis radiasi yang diterima.

Penutup

Dari penjelasan di atas, dapatlah kita ketahui bahwa nuklir bukanlah momok yang mengerikan bagi kita. Berbagai hal yang kita takutkan ternyata tidak seseram yang dibayangkan. Bahkan dapat dikatakan bahwa teknologi nuklir adalah teknologi ramah lingkungan dan berbagai manfaat dapat kita peroleh dari nuklir ini. Di sini pemerintah dan masyarakat harus mencoba untuk memahami nuklir secara lebih lagi. Karena boleh jadi, perbedaan persepsi dan pertentangan opini tentang pengembangan nuklir di Indonesia, yang selama ini terjadi, boleh jadi dikarenakan karena kita tidak tahu dan terlalu trauma dengan tragedi nuklir masa lalu.


Tabung dan Selongsong (Shell and Tube)

Jenis umum dari penukar panas, biasanya digunakan dalam kondisi tekanan relatif tinggi, yang terdiri dari sebuah selongsong yang didalamnya disusun suatu anulus dengan rangkaian tertentu (untuk mendapatkan luas permukaan yang optimal). Fluida mengalir di selongsong maupun di anulus sehingga terjadi perpindahan panas antar fluida dengan dinding anulus sebagai perantara. Beberapa jenis rangkaian anulus misalnya; triangular, segiempat, dll.

gb485

Jenis Plat

Contoh lainnya adalah penukar panas jenis plat. Alat jenis ini terdiri dari beberapa plat yang disusun dengan rangkaian tertentu, dan fluida yang mengalir diantaranya.

Pengertian Perpindahan Panas

Alat penukar kalor merupakan suatu alat yang menghasilkan perpindahan panas dari suatu fluida yang temperaturnya lebih tinggi ke fluida yang temperaturnya lebih rendah. Proses perpindahan panas tersebut dapat dilakukan secara langsung dan tidak langsung. Maksudnya ialah :
a.Alat penukar kalor kontak langsung Pada alat ini fluida yang panas akan bercampur secara langsung dengan fluida dingin (tanpa adanya pemisah) dalam suatu bejana atau ruangan. Misalnya ejector, daerator dan lain-lain.
b.Alat penukar kalor kontak tak langsung Pada alat ini fluida panas tidak berhubungan langsung (indirect contact) dengan fluida dingin. Jadi proses perpindahan panasnya itu mempunyai media perantara, seperti pipa, plat, atau peralatan jenis lainnya. Misalnya kondensor, ekonomiser air preheater dan lain-lain.

Cara-cara Perpindahan Panas

Perpindahan panas dapat didefinisikan sebagai berpindahnya energi dari satu tempat ke tempatnya sebagai akibat dari perbedaan temperatur antara tempat-tempat tersebut. Pada umumnya perpindahan panas dapat berlangsung melalui 3 cara yaitu secara konduksi, konveksi, radiasi. Untuk alat penukar kalor tipe spiral ini lebih ditekankan pada perpindahan panas secara konveksi sehingga pembahasannya tidak menjelaskan tentang perpindahan panas secara konduksi dan radiasi.

Konveksi adalah proses transport energy dengan kerja gabungan dari konduksi panas, penyimpanan energy dan gerakan mencampur fluida. Perpindahan panas konveksi menurut cara menggerakkan alirannya diklasifikasikan dalam konveksi bebas dan konveksi paksa. Dikatakan sebagai konveksi bebas (free/ natural convection) apabila gerakan
mencampur diakibatkan oleh perbedaan kerapatan massa jenis yang disebabkan oleh gradien suhu, contohnya gerakan yang terlihat pada air yang sedang dipanaskan. Sedangkan apabila gerakan fluida disebabkan kerena adanya energi dari luar seperti pokpa atau kipas maka disebut sebagai konveksi paksa (forced convection), misalnya pendinginan radiator dengan udara yang dihembuskan oleh kipas.

gbtulisan

Keefektifan perpindahan panas dengan cara konveksi tergantung sebagian besarnya gerakan mencampur fluida. Sehingga studi perpindahan konveksi didasarkan pada pengetahuan tentang ciri-ciri aliran fluida.

Tahun 2011 dinobatkan sebagai Tahun Internasional Kimia 2011

International Year of Chemistry 2011Kabar gembira buat semua pecinta kimia, karena dua tahun mendatang tepatnya tahun 2011 dinobatkan sebagai Tahun Internasional Kimia 2011 (International Year of Chemistry – IYC 2011 – Our Life , Our Future). Gagasan Tahun Internasional Kimia 2011 ini pertama kali dicanangkan pada bulan Agustus 2007 pada pertemuan umum The International Union of Pure and Applied Chemistry (IUPAC) di Turin Italia. Gagasan ini ternyata disambut baik oleh dewan PBB dan pada pertemuan PBB bulan Desember 2008, IUPAC dan Organisasi Pendidikan, Ilmu Pengetahuan, dan Kebudayaan Perserikatan Bangsa-Bangsa (UNESCO) menyetujui untuk merayakan tahun 2011 sebagai Tahun Internasional Kimia. Tahun 2011 juga bertepatan dengan peringatan 100 tahun penghargaan Nobel Prize Kimia untuk Mme Maria Sklodowska Curie, yang berarti juga peringatan akan kontribusi wanita ke ilmu sains.

Peranan kimia dalam kehidupan manusia begitu penting, seluruh materi baik padat, larutan dan gas tersusun dari berbagai unsur-unsur kimia dan bahkan seluruh proses kehidupan ditentukan oleh berbagai reaksi kimia. IUPAC dan UNESCO menyadari sudah saatnya untuk memperingati keberhasilan kimia dan sumbangannya bagi kehidupan manusia.

“Tahun Internasional Kimia akan meningkatkan apresiasi global terhadap perkembangan ilmu kimia dalam kehidupan kita dan masa depan kita. Saya berharap peringatan ini dapat meningkatkan kepedulian publik terhadap kimia dan meningkatkan ketertarikan kaum muda akan ilmu sains serta memberikan masa depan yang cerah bagi masa depan kimia”, sambutan dari Ketua the International Union of Pure and Applied Chemistry (IUPAC), Professor Jung-Il Jin pada pertemuan PBB.

“Saya menyambut kesempatan untuk memperingati kimia sebagai salah satu dasar dari ilmu sains,” ujar Koichiro Matsuura, Direktur Umum UNESCO, “Meningkatkan kepedulian publik terhadap kimia adalah suatu hal yang sangat penting dalam rangka menjawab tantangan pembangunan yang berkesinambungan. Adalah hal yang mutlak bahwa kimia berperan penting dalam membangun sumber alternatif energi dan menghidupi populasi dunia yang terus berkembang” tambahnya.

Dalam memperingati Tahun Internasional Kimia 2011 akan direncanakan berbagai aktivitas dan event baik regional, nasional dan internasional yang didukung baik dari asosiasi kimia nasional, institusi edukasi, industri, pemerintahan dan organisasi non-pemerintahan. Aktivitas dan event ini berusaha memperkenalkan kepada publik luas tentang peranan kimia, memberikan solusi terhadap tantangan global, dan membangun generasi muda yang peduli terhadap sains.

Situs chem-is-try.org juga akan turut aktif menyukseskan Tahun Internasional Kimia 2011 dengan berusaha bekerjasama dengan beberapa instansi yang peduli dengan sains. Jika kamu punya ide atau masukan untuk menyukseskan Tahun Internasional Kimia 2011, silahkan tulis pada bagian komentar artikel ini. Kami tunggu ide dan masukannya.

Powered By Blogger